Pilot’s Guide

Revision C
September 25, 1996
Part No. GM606
© 1996 Northstar Technologies
a division of CMC Electronics, Inc.
Current Product Line is now being maintained by

CMC Electronics Inc.
600 Dr. Frederik Philips Boulevard
Ville Saint-Laurent, Quebec, Canada
H4M 2S9
Tel : 1-888-827-2881 or 514-748-3050

All Manual references to Northstar should read CMC Electronics Inc.
Using the M3's APCH function
Contents

Using this Pilot's Guide 1
GPS approaches—today and tomorrow 1
Introduction to flying approaches with the M3 2
Setting up the approach 4
Flying the approach 5
M3 approach guidance 6
Know what's coming! 8
Vectors to final 8
Clearance direct to the FAF 8
Procedure turns 9
Holding patterns 10
DME arcs 13
Missed approaches 14
Charting differences 15
Using demo mode to train for approaches 16
Other new features 17
Using this Pilot’s Guide

This *Pilot’s Guide* is written for pilots who are familiar with the basic operation of Northstar navigators. It gives simplified instructions that are adequate for flying approaches “as published” with the M3.

Most approaches that you fly will proceed exactly as described in this guide. Depending on the particular approach, additional advisory messages may be displayed while you’re following these instructions. These messages should be self-explanatory, and aren’t described in this guide. Full descriptions are given in the *Northstar M3 Approach GPS Reference Manual*, along with any other information you should know before you fly. The reference manual also provides procedures for manually overriding the standard waypoint sequencing.

Although the basic procedures for the M3 are quite simple, it’s important to fully understand all the details of how the M3 works before you fly real approaches under IMC. Use this guide to become familiar with M3 approaches, and as a quick refresher course, but be sure to read the M3 reference manual to learn all the details.

After some important introductory information, we’ll describe how to set up the M3 to fly an approach. Next, you’ll see how to use the M3’s guidance along the approach. Then, we’ll show you approach variations that you’re likely to encounter. And finally, you’ll learn how to fly a missed approach.

Flying an approach with the M3 is much like any other form of navigation. The three basic steps are:

1. designate the airport
2. designate the approach and entry point
3. fly the approach using the M3’s guidance

GPS approaches—today and tomorrow

Even though the GPS approach program is just beginning, GPS now offers you a safer and easier way to fly non-precision approaches than ever before. Gone are uncertain NDB fixes, VOR scalloping, and using a stopwatch to time outbound and inbound legs. Pilots are assured of
knowing their position accurately under all weather conditions, at all locations, any time of the day.

It's expensive and time-consuming, however, for the FAA to design new GPS approaches. While over 500 procedures have been designed, checked, and approved so far, most airports are still without new GPS approaches. As the FAA heads towards its goal of replacing all conventional navaids with GPS, more and more simplified GPS procedures will become available. In the meantime, to make GPS usable today at nearly all major U.S. airports, the FAA has approved about 5,000 GPS overlay approaches, which allow you to fly existing VOR and NDB procedures with the accuracy and ease of GPS.

Although the new GPS approaches are extremely easy to fly, many of the GPS overlay approaches still require significant maneuvering to follow the old procedures. The M3's database includes every leg of every hold and procedure turn, so it can sequence automatically through them, significantly reducing the pilot's workload. Flying an approach as published is a hands-off operation with the Northstar M3.

To fly an approach as a GPS approach, you must use the sequence provided in the database. Simply calling up a VOR, for example, and flying the published radial, is not an approved method for flying a GPS approach.

Introduction to flying approaches with the M3

An approach is a sequence of waypoints and radials, including procedure turns and holding patterns. The M3 automatically steps through this sequence and performs certain other actions, such as automatically scaling the CDI sensitivity at the proper point in the approach.

The M3 treats approaches as entities totally separate from the rest of the database. Everything dealing with the selecting and sequencing of an approach is handled in the **APCH** function. An approach isn't a part of a route or a flight plan, and it isn't associated with an airport selected in either **APT** position.

The **APCH** function provides the "big picture." It's where you select the airport where you'll be flying the approach, which approach you'll be
using, and how you'll start that approach (that is, which IAF you'll use, or VECTORS TO FINAL). Use APCH to select and review the sequence, and use TRK and INFO to provide navigation guidance to the current waypoint or along the current radial. Use the APCH position only to set up and review the sequence, not to actually fly it.

Approach “levels”

The APCH function has three different vertical levels (see the diagram on the inside front cover). The _large secondary_ knob can always be used to move “up and down” between these levels. At the top, Level 1 is used to designate the airport. After entering the identifier, either press ACK to lock it in as the destination, or use the _large secondary_ knob to move down to Level 2 and Level 3 to browse through details of the various approaches without changing your designated destination airport.

After you ACK your destination airport in Level 1, the readout automatically drops down to Level 2. At this point, use the _small primary_ knob to scroll through all the available approaches at your destination (there may be only one). With the desired approach displayed on the primary readout, use the _small secondary_ knob to scroll through the various entry points of the approach. Entry points consist of VECTORS TO FINAL, transition fixes (labelled “TF”), and initial approach fixes (labelled “IAF”). Selecting a TF or IAF as your entry point usually implies a full approach with a procedure turn or a “hold in lieu of a procedure turn” in the sequence. An exception is an IAF charted as a “NoPT” segment: In this case, the M3 won’t include the procedure turn.

After you’ve selected your destination in Level 1, and the approach and the entry to the approach in Level 2, enable the approach by pushing D→ followed by ACK. This accomplishes two things: The selected IAF becomes your current waypoint (if you selected VECTORS TO FINAL, the current waypoint will be the FAF), and the selected approach sequence begins. In addition, the readout switches to the TRK INFO position to show guidance to the current waypoint.

When the approach is active, switching back to APCH will show the Level 3 readout and the current active leg of the approach. In this way, Level 3 can be thought of as a “ticker tape” showing leg by leg the entire approach you selected in Level 2. The _small primary_ knob will
step forward or backward through the sequence, so you can brief yourself on the approach. You won’t affect the guidance unless you press D- and ACK a second time, so there’s no harm in scanning through the sequence. You can switch back to TRK at any time, without having to return the pointer to the current leg.

It is highly recommended that you take the time to step through the sequence, either before or after you’ve enabled the approach, to be sure you understand what the M3 will do. Remember, you can always move up to Level 1 or Level 2 of APCH by using the large secondary knob, if you want to change the procedure or even the destination airport.

Level 3’s “ticker tape” allows you to press D- and ACK to activate any leg. If, for some reason, the M3 isn’t on the leg you expect, or if you want to intercept the next leg, simply turn the small primary knob to display the desired leg, and press D- followed by ACK to force that leg to become active.

The next sections provide step-by-step details of flying an approach with the M3.

Setting up the approach

Designate the airport

Designating the airport is done the same way for every approach:

1. Turn the large primary knob to APCH. (If necessary, turn the large secondary knob all the way to the left to display Level 1.)

2. Display your destination airport on the primary readout. Either turn the small primary knob to display the airport, or press CRSR and enter the identifier character by character:

 OSH DEST. ACK? RAIM ?? @20:35Z

3. If necessary, adjust the ETA at your destination by turning the small secondary knob. This step allows the M3 to inform you if the GPS self-checking function (RAIM) might be unavailable when you reach the destination.

4. Press ACK.
It's a good idea to enter the destination and the ETA early in the flight—even before takeoff, if possible—so you'll be informed of any predicted lack of GPS availability at the destination.

Designate the approach and entry point

Designate the approach name and the entry point when you've been assigned an approach:

1. Turn the *large primary* knob to **APCH**. (If necessary, turn the *large secondary* knob to display Level 2.)

2. Turn the *small primary* knob to display the approach name.

 For OSH, choose between:

 - NDB RWY 36
 - GPS RWY 27
 - VOR RWY 09
 - VOR RWY 18

3. Turn the *small secondary* knob to display the entry point (the IAF or TF), or VECTORS TO FINAL:

 For NDB RWY 36, choose between:

 - VECTORS TO FINAL
 - OSH v TF
 - OS #3N IAF

```
OSH NDB RWY 36 TO SH v IAF
```

4. Press **-D-** and **ACK** to start the approach.

You can preselect the approach using steps one through three, and then return to the **APCH** function and use step four to initiate the approach later.

Flying the approach

Pressing **-D-** and **ACK** as described above starts the M3 flying the approach.

If you selected an IAF or TF as the entry point, the M3 flies direct to the designated waypoint. If you selected VECTORS TO FINAL as the entry, the M3 provides positional awareness while you're being vectored, as described in "Vectors to final" on page 8. During this step, you can re-center the CDI to fly direct to the waypoint by pressing **-D-** and **ACK**
while in the TRK function; however, this action will be possible only if the resulting turn at the FAF is within 90 degrees.

The M3 gradually starts changing the CDI sensitivity to ±1 nm full scale, and it automatically sequences from one waypoint to the next as you complete each leg.

At each waypoint, the M3 calculates a smooth transition path along a two-minute turn from one leg to the next. If you keep the CDI centered during the turn, you’ll follow this path precisely.

The WAYPOINT annunciator starts flashing 15 seconds before you should start the turn. When the M3 sequences to the next waypoint, the annunciator stops flashing and remains on for 10 seconds.

When the WAYPOINT annunciator flashes, the M3’s ACK button may also flash; press it to display the distance to the point where the turn should begin and the heading of the next leg. This distance and heading is displayed automatically without flashing the ACK button, if you’re already displaying the TRK INFO guidance recommended in the next section.

Three miles from the FAF, the APCH annunciator flashes to indicate that the CDI sensitivity will soon increase, reaching a maximum of 0.3 nm full scale at the FAF.

M3 approach guidance

A pilot who has navigated with loran or GPS is already familiar with most of the guidance given by the M3:

- Cross-track distance, displayed on the panel-mounted CDI or HSI
- Distance and bearing to the waypoint
- Ground speed and track angle
- When to start the next turn

If you’re not using an autopilot, Northstar recommends using the TRK and INFO functions to show distance and bearing to the waypoint on
the primary readout, and ground speed (GS) and track angle error (TAE) on the secondary readout:

\[\text{WSH \, v \, 145^\circ \, 15^\prime \, GS \, 120^\circ \, \leftarrow 2^\circ} \]

TAE is a new feature that makes it easier to stay on the course line. TAE is simply the difference between your current track angle and your desired track angle. When you're flying parallel to (or on) the desired track, the TAE is zero.

Cross-track error is your distance from the desired track line; TAE represents the rate of change of cross-track error. If the TAE is zero, your cross-track error isn't changing.

TAE is displayed as a number (the difference between the two angles) and an arrow. The arrow shows which way your cross-track error is changing due to TAE. If the arrow points left, your CDI needle is moving left; if the arrow points right, the needle is moving right. If you want to push the CDI needle left to get back on the course line, turn the aircraft so the arrow points left. The number of degrees displayed is your intercept angle.

If you're using an autopilot, you'll probably prefer displaying your desired track (DTK) on the secondary readout. DTK is one knob click to the left of the TAE display.

The M3 automatically sequences through each waypoint from your entry point to the Missed Approach Point (MAP). To fly an approach as published, you just have to follow the M3's guidance.
Know what's coming!

You don’t want to be surprised in flight by an unfamiliar approach element. Be sure to check out the approach plate in advance, so you know what elements it contains. Use Level 3 of the APCH function to scan through the segments of the approach, and match up each segment with the approach plate, as described in Section 6.7 of the M3 reference manual.

Vectors to final

Air Traffic Control often gives you radar vectors to the Final Approach Fix (FAF). As soon as ATC says to “fly heading XXX, vectors to the final approach course,” select VECTORS TO FINAL as the entry for the approach. Then press \(-D\rightarrow\) and ACK from within APCH to enable the VECTORS TO FINAL function. The M3 skips all the waypoints before the FAF, and the CDI needle displays guidance relative to the extension of the final approach course, as ATC lines you up with that course.

Typically, ATC will give you a heading to fly that will cause you to cross the final approach course at some point outside of the FAF. In this case, simply watch the CDI swing in as you near the final course, turn the aircraft to intercept it, and proceed to the FAF. The TAE readout shows your intercept angle to the final approach course. As you pass the FAF, the M3 resumes sequencing through the rest of the approach.

Clearance direct to the FAF

Sometimes, ATC tells you to proceed direct to the FAF and continue straight in with no procedure turn. To fly this clearance, first select the VECTORS TO FINAL function as described above. Then, re-center the CDI and navigate direct to the FAF by pressing \(-D\rightarrow\) and ACK from within the TRK function.
Procedure turns

The M3 automatically guides you through procedure turns. Level 3 of the **APCH** function indicates that a procedure turn is next by displaying the following on the secondary readout:

```
DIRECT °05 °3n  IAF  349°  → PT
```

The M3 automatically sequences to, and provides guidance along, the outbound radial of the procedure turn. The radial comes from the Jeppesen database; you don’t have to enter it manually. After you’re established outbound on the procedure turn, the recommended **TRK INFO** readout shows the name of the waypoint, distance and bearing from it, the time you’ve been flying outbound, and TAE.

```
F00SHV 270°  11mi  OUT  0:25  ←4°
```

Begin the procedure turn when the outbound timer counts up to two minutes, or when you reach the time or distance you’ve chosen for the outbound leg. The M3 continues to display your cross-track distance to the radial while you fly the course reversal.

As you turn inbound, the M3 automatically sequences to the inbound leg and reverts to the normal **TRK INFO** display:

```
F00SHV  090°  103mi  GS120°  ←0° →
```

After you complete the procedure turn, simply continue with the next leg of the approach.

The “sensor FAF”

In the case of an on-airport VOR or NDB, the underlying (traditional) approach usually won’t have a FAF. Since all GPS approaches, both overlay and stand-alone, must have a FAF, a waypoint called a “sensor FAF” is added to the GPS overlay approach, 4 nm from the MAP. This waypoint is given a name such as “FF090” (the letters “FF” followed by two or three digits designating the final approach

960925

M3 Pilot’s Guide Revision C
course). You must fly the procedure turn outbound beyond the sensor FAF, so that the sensor FAF will be in front of you when you reverse course. Otherwise, the M3 will not sequence to the next waypoint and will appear to be “stuck,” waiting to cross the sensor FAF.

Hold in lieu of a procedure turn

Some approaches whose IAF is co-located with the FAF use a hold in lieu of a procedure turn. The M3 treats this a lot like a procedure turn, guiding you once around the hold, then proceeding with the approach (unless you choose to repeat the hold).

Holding patterns

The M3 guides you automatically around any holding patterns in the approach. While you’re on the hold, the M3 provides course guidance relative to the radial you’re holding on, and automatically sequences from outbound to inbound and back as you make the turns. The radial comes from the Jeppesen database; you don’t have to enter it manually.

Sequencing the legs

The M3 is programmed to proceed through any optional holds, and hold on any mandatory holds. You can, however, easily override these choices, except at the Missed Approach Holding Point (MAHP).

As you near a holding waypoint, the M3’s **APCH** function displays:

```
270° NO HOLD
```

for an optional hold, and:

```
270° → HOLD
```

for a mandatory hold.

To override the readout choice, turn the **small secondary** knob. The M3 displays the new action you’re requesting (one of the following, depending on the situation):

```
HOLD OUT & BACK DESIRED ACK?
```
Select the action you want, and press **ACK**.

Guidance on the holding pattern

The M3's database includes holding-pattern radials for all published holds on approaches. A holding pattern consists of HOLD OUT and HOLD IN legs, both of which the M3 automatically sequences through, based on your heading. After you initially cross the holding fix, the M3 sequences to the HOLD OUT leg, which is a radial from the holding fix—the same course as the outbound leg of the holding pattern.

When you're outbound on the hold, you're flying parallel to the HOLD OUT radial. Even though the CDI will be fully deflected, you can make sure that your outbound leg is exactly parallel by maintaining a TAE of zero degrees. Once established in the hold, you should maintain a centered CDI for a HOLD IN leg, but not for a HOLD OUT leg.

Entering holding patterns

Entries to a holding pattern can be easily made by using the TAE readout. The three major entry types are diagrammed below for reference:

- **Parallel entry**
- **Teardrop entry**
- **Direct entry**

Direct entry

Cross the holding fix, and make a standard-rate turn to the outbound heading. When you pass abeam of the fix, the M3 sequences to the HOLD OUT leg. The count-up timer starts, the CDI is deflected towards
the holding radial, and the TAE will display zero degrees when you’re tracking exactly parallel to the outbound radial. At the appropriate time or distance, make your turn back towards the holding fix. After a few seconds, the M3 sequences to the HOLD IN leg, the count-up timer resets, and the CDI is centered on the inbound (or “holding”) radial.

Parallel entry
Cross the holding fix and fly the outbound heading. The M3 sequences to the HOLD OUT leg. Keeping the CDI centered will provide guidance outbound on the holding radial. At the appropriate time or distance, make a 225-degree turn to establish a 45-degree intercept to the inbound leg. The M3 will sequence to the HOLD IN leg. Use the TAE readout to hold the desired intercept angle, and the CDI will center when you’re established on the holding radial.

Teardrop entry
Cross the holding fix, and the M3 sequences to the HOLD OUT leg. Fly a heading that causes a TAE of 30 degrees. The count-up timer starts and the CDI is deflected towards the holding radial. At the appropriate time or distance, make a turn back towards the holding radial, and the M3 sequences to the HOLD IN leg. Use the TAE to hold the desired intercept, and the CDI will center when you’re established on the holding radial.

Leaving the holding pattern
The only type of hold you’ll normally encounter on an approach (other than at the MAHP) is a hold in lieu of a procedure turn. The M3 is programmed to guide you once around this hold and then proceed.

If you should manually set this type of hold to **REPEAT**, then you’ll need to set it back to **PROCEED** when you’re cleared to the next fix. When you’re coming around the hold for the last time, turn the large primary knob to **APCH**, turn the small primary knob to display the HOLD IN leg, then turn the small secondary knob to display:

PROCEED AFTER THIS HOLD ACK?

Then press **ACK**.
DME arcs

DME arcs are flown just like point-to-point legs. Selecting an arc endpoint as the IAF takes you direct to the endpoint and then sequences to the next waypoint along the curved arc. To fly a curved leg, simply keep the CDI centered.

Naming of arc endpoints

Arc endpoints are waypoints whose names start with the letter “D,” followed by the three digits of the bearing from the VOR, followed by a letter indicating the DME distance from the VOR. For example, an arc starting on the 022-degree radial at 10 DME will begin with the waypoint “D022J” (“J,” the tenth letter of the alphabet, indicates 10 DME).

Intercepting a DME arc

Occasionally, ATC issues a vector to intercept a DME arc. The M3 makes this procedure easy:

1. In APCH Level 2, select the entry point for the approach you wish to intercept.
2. Turn the large secondary knob to select APCH Level 3.
3. Turn the small primary knob to display the DME arc:

 ![DME Arc]

 This leg describes the 10 DME arc from D022J to the fix named BOSOX, having an initial course of 113 degrees.
4. Press -D- to display:

 ![Intercepting a DME arc]

5. Press ACK to begin guidance relative to the arc.

The CDI or HSI needle will now follow the 10 DME arc. Simply follow the vector you're given until you capture the needle, and then keep the needle centered.
Missed approaches

After you pass the MAP, the M3 continues to give guidance along the extension of the FAF-to-MAP leg above the runway until you manually initiate the missed approach procedure.

When you cross the MAP, it’s normal for the -D- button to start flashing; this reminds you that pressing the flashing button is the first step in initiating a missed approach. The -D- button flashes if you’re using the recommended TRK function; if not, the MSG button flashes.

To initiate the missed approach after passing the MAP:

1. Press the flashing -D- or MSG button. The M3 displays:

 | FLY MISSED APCH PROCEDURE ACK?

2. Press ACK.

The M3 follows the steps of the missed approach procedure from the Jeppesen database. Most missed approach sequences in the database start by providing the initial climbout altitude, usually the safe maneuvering altitude, 400 feet above the airport elevation. In the TRK INFO function, with the small secondary knob all the way to the left, the M3 displays a readout similar to:

 | @1400' ACK?

When you’re at or above the displayed altitude, press the flashing ACK button to resume the sequencing to the MAHP or other intermediate waypoints.

Initiating a missed approach before the MAP

You can initiate a missed approach anytime after passing the first waypoint of the approach. To do this, turn the large primary knob to TRK, and press -D- and ACK as described above. If you initiate a missed approach before passing the MAP, the M3 guides you along the remainder of the approach to the MAP and on to the MAHP, but with the APCH annunciator extinguished and the CDI sensitivity changing back to ±1 nm.
Flying a heading to a radial

Sometimes, the published missed approach instructs you to fly a heading to intercept a VOR radial and then proceed along it to the holding fix. Fly the heading specified on the approach plate. The M3 doesn’t display heading guidance along this leg. Instead, it sequences to a leg that runs from the VOR to the holding fix. Just fly the published heading until the CDI captures the radial, follow it to the holding fix, and enter the hold.

Charting differences

Overlay GPS approaches may use unfamiliar-sounding waypoints, such as “MA051” or “FF23.” Furthermore, these waypoints may not appear on your approach plates. NOS approach plates, in particular, do not depict most GPS waypoints. These waypoints are depicted on Jeppesen approach plates, but even Jeppesen plates may not show intermediate step-down fixes, especially those between the FAF and the MAP.

In the ARINC naming convention for GPS waypoints, the first two letters describe the waypoint’s function, and the next two or three digits describe the runway or the magnetic course. For example, “RW23” is the threshold of runway 23, and “MA051” is the missed approach point for a circling approach whose final approach course is 051 degrees.

The two-letter waypoint descriptors include:

- **RW**: the runway threshold
- **MA**: the Missed Approach Point for a circling approach
- **FF**: the Final Approach Fix, usually a so-called “sensor FAF”
- **CV or CD**: The Final Approach Course Fix, lined up with the final approach course but outside the FAF
Using demo mode to train for approaches

The M3’s demo mode is an ideal way to learn how to fly approaches without leaving home. As described in the M3 reference manual, you can use a source of 12- to 24-Volt DC power to run the unit when out of the aircraft, or just use it on the ground in your aircraft.

To enter demo mode, press the -D→ button while turning the M3 on. Then switch to SETUP, and select and ACK the display DEMO MODE: YES. The M3 then asks you to select one of the database waypoints as a starting position.

Demo mode simulates flying a heading you specify, or automatically flies the turns of a route or approach. Set the ground speed either to 900 knots to quickly run through an approach, or to 50 knots to slowly check out each readout. During simulated flight, all of the M3’s readouts work normally, letting you see exactly what happens at each step.

Here are some key points to be aware of when using demo mode to simulate flying approaches:

Flying in demo mode

To fly a heading, turn the large secondary knob to SETUP and the small secondary knob to display GS and TRK. Press CRSR and enter the desired speed and course.

To fly to a waypoint, display the waypoint in the primary readout and press -D→ and ACK. The M3 changes its simulated heading to fly direct to the waypoint, and sets the speed to 150 knots, unless the speed had previously been set.

To fly a route, display the desired leg and press -D→ and ACK. The M3 simulates sequencing through the legs. When the M3 starts guidance on a new leg, it changes its current course to fly parallel to the new leg.

To fly an approach, display the entry point using APCH Level 2, and press -D→ and ACK.

Starting the approach

Upon entering demo mode, you can specify any waypoint as the starting point for a simulated flight. If there’s already a waypoint at an
appropriate location for the approach, just use it. If not, you can start at
the airport and fly away from it for a few miles (at high speed, if you
wish). When you press D→ and ACK to begin the selected approach,
the simulated heading changes to fly directly towards the chosen IAF
(or to the FAF, if you’ve selected VECTORS TO FINAL).

Flying the approach
The simulated heading will change automatically as you pass each
waypoint. It won’t follow a smooth two-minute turn, but simply jumps
to the heading of the next leg. Similarly, demo mode won’t follow a
DME arc; instead, it flies a straight line between the end points.

Holds and procedure turns
Demo mode won’t fully simulate flying around holds or procedure
turns. You must manually enter the appropriate headings in SETUP to
fly around these patterns. In particular, you must supply the turn from
the outbound to the inbound leg. To follow the racetrack pattern of a
hold, you can use a pair of ninety-degree turns at each end. It’s impor-
tant to plan these out carefully in advance using the approach plate, so
you can easily make the heading changes and observe the results.

Other new features
Flying a radial
To fly a radial to or from a waypoint:

1. Using the APT, VOR, NDB, INT, or USER waypoint category, display
the waypoint (DEN, in this example) in the primary readout.

2. Press D→. The M3 displays:

 FLY 90° DIRECT TO DEN ACK?

3. Use the small primary knob as a course-set function to designate
the direction you want to fly to or from the waypoint:

 FLY 73° RADIAL TO DEN ACK?

4. Press ACK.
The CDI shows your off-course distance, just like the needle of a VOR receiver. Always fly TO the needle, regardless of whether you’re flying to or from the waypoint.

Queuing a radial

To leave the waypoint you’re flying to along a designated radial:

1. Turn the *large primary* knob to TRK.
2. Press -D→ twice. The M3 displays:

 FLY 115° AFTER DEN **ACK?**

3. Turn the *small primary* knob to select the radial along which you want to leave the waypoint:

 FLY 084° AFTER DEN **ACK?**

4. Press ACK.

 The M3 continues navigating to the current waypoint, and then navigates along the specified radial.

Editing a route while flying it

A new feature of the M3 lets you edit a user-entered route while you’re flying it. When you use the RTE LEG EDIT function on the route you’re following, the M3 displays:

 PAUSE ROUTE ACK?

Press ACK to pause the route, and then edit it as described in the M3 reference manual. While the route is paused, guidance continues to the current waypoint, and then to the next waypoint, if any. When you’ve finished editing the route, display the desired current leg, and press -D→ and ACK to continue along it.
The steps of a typical approach flown with the M3